Results:
Results:
(STAT) (Var) (σ
x
)
1,154700538
Mean: 3, Population Standard Deviation: 1,154700538
Example 3: To calculate the linear regression and logarithmic regression
correlation coefficients for the following paired-variable data and determine
the regression formula for the strongest correlation: (x; y) = (20; 3150),
(110; 7310), (200; 8800), (290; 9310). Specify Fix 3 (three decimal places)
for results.
(SETUP) (STAT) (OFF)
(SETUP) (Fix)
(STAT) (A+BX)
20 110 200 290
3150 7310 8800 9310
(STAT) (Reg) (r)
0,923
(STAT) (Type) (ln X)
(STAT) (Reg) (r)
0,998
(STAT) (Reg) (A) -3857,984
(STAT) (Reg) (B) 2357,532
Linear Regression Correlation Coefficient: 0,923
Logarithmic Regression Correlation Coefficient: 0,998
Logarithmic Regression Formula: y = -3857,984 + 2357,532lnx
Calculating Estimated Values
Based on the regression formula obtained by paired-variable statistical
calculation, the estimated value of y can be calculated for a given x-value.
The corresponding x-value (two values, x
1
and x
2
, in the case of quadratic
regression) also can be calculated for a value of y in the regression
formula.
Example 4: To determine the estimate value for x when y = -130 in the
regression formula produced by logarithmic regression of the data in
Example 3. Specify Fix 3 for the result. (Perform the following operation
after completing the operations in Example 3.)
130 (STAT) (Reg) (xˆ)
4,861
Important!
• Regression coefficient, correlation coefficient, and estimated value calculations can
take considerable time when there are a large number of data items.
43