1.4 Enclosure Sizes and Power Ratings
Enclosure size D1n D2n E9 F18
Enclosure protection
IP 21/54 21/54 21/54 21/54
NEMA Type 1/Type 12 Type 1/Type 12 Type 1/Type 12 Type 1/Type 12
Frequency converter
dimensions
[mm/inch]
Height 1740/68.5 1740/68.5 2000.7/78.77 2278.4/89.70
Width 915/36.02 1020/40.16 1200/47.24 2792/109.92
Depth 380/14.96 380/14.96 493.5/19.43 605.8/23.85
Frequency converter
weights
[kg/lbs]
Maximum
weight
353/777 413/910 676/1490 1900/4189
Shipping weight 416/917 476/1050 840/1851 2345/5171
Table 1.1 Mechanical Dimensions, Enclosure Sizes D, E, and F
1.5 Approvals
1.5.1 Approvals
Table 1.2 Compliance Marks: CE, UL, and C-Tick
1.5.2 Compliance with ADN
For compliance with the European Agreement concerning
International Carriage of Dangerous Goods by Inland
Waterways (ADN), refer to ADN-compliant Installation in the
Design Guide.
1.6 Harmonics Overview
1.6.1 Harmonics
Non-linear loads such as found with 6-pulse frequency
converters do not draw current uniformly from the power
line. This non-sinusoidal current has components which are
multiples of the fundamental current frequency. These
components are referred to as harmonics. It is important to
control the total harmonic distortion on the mains supply.
Although the harmonic currents do not directly aect
electrical energy consumption, they generate heat in
wiring and transformers and can impact other devices on
the same power line.
1.6.2 Harmonic Analysis
Since harmonics increase heat losses, it is important to
design systems with harmonics in mind to prevent
overloading the transformer, inductors, and wiring.
When necessary, perform an analysis of the system
harmonics to determine equipment eects.
A non-sinusoidal current is transformed with a Fourier
series analysis into sine-wave currents at dierent
frequencies, that is, dierent harmonic currents I
N
with 50
Hz or 60 Hz as the fundamental frequency.
Abbreviation Description
f
1
Fundamental frequency (50 Hz or 60 Hz)
I
1
Current at the fundamental frequency
U
1
Voltage at the fundamental frequency
I
n
Current at the n
th
harmonic frequency
U
n
Voltage at the n
th
harmonic frequency
n Harmonic order
Table 1.3 Harmonics-related Abbreviations
Fundamental
current (I
1
)
Harmonic current (I
n
)
Current I
1
I
5
I
7
I
11
Frequency
[Hz]
50 250 350 550
Table 1.4 Fundamental and Harmonic Currents
Current Harmonic current
I
RMS
I
1
I
5
I
7
I
11-49
Input current 1.0 0.9 0.5 0.2 < 0.1
Table 1.5 Harmonic Currents Compared to the RMS Input
Current
Introduction Installation Manual
MG37A322 Danfoss A/S © Rev. 04/2015 All rights reserved. 15
1 1