ZED-F9R-Integration manual
Platform Max altitude [m] Max horizontal
velocity [m/s]
Max vertical velocity
[m/s]
Sanity check type Max
position
deviation
Robotic lawn
mower
N/A 3 N/A Altitude, velocity and
attitude
Medium
E-scooter 6000 50 15 Altitude, velocity and
attitude
Medium
Table 9: Dynamic platform model details
Robotic lawn mower (RLM) and e-scooter dynamics models are supported from firmware
version HPS 1.21 onwards
ZED-F9R's high precision sensor fusion algorithm is optimized for automotive, e-scooter
and robotic lawn mower platforms only
Applying dynamic platform models designed for high acceleration systems (e.g. airborne <2g) can
result in a higher standard deviation in the reported position.
If a sanity check against a limit of the dynamic platform model fails, then the position solution
is invalidated. Table 9 above shows the types of sanity checks which are applied for a particular
dynamic platform model.
3.1.10.2 Navigation input filters
The navigation input filters in CFG-NAVSPG-* configuration group provide the input data of the
navigation engine.
Configuration item Description
CFG-NAVSPG-FIXMODE By default, the receiver calculates a 3D position fix if possible but reverts to 2D
position if necessary (auto 2D/3D). The receiver can be forced to only calculate 2D
(2D only) or 3D (3D only) positions.
CFG-NAVSPG-CONSTR_ALT, CFG-
NAVSPG-CONSTR_ALTVAR
The fixed altitude is used if fixMode is set to 2D only. A variance greater than zero
must also be supplied.
CFG-NAVSPG-INFIL_MINELEV Minimum elevation of a satellite above the horizon in order to be used in the
navigation solution. Low elevation satellites may provide degraded accuracy, due to
the long signal path through the atmosphere.
CFG-NAVSPG-INFIL_NCNOTHRS,
CFG-NAVSPG-INFIL_CNOTHRS
A navigation solution will only be attempted if there are at least the given number of
SVs with signals at least as strong as the given threshold.
Table 10: Navigation input filter parameters
If the receiver only has three satellites for calculating a position, the navigation algorithm uses a
constant altitude to compensate for the missing fourth satellite. When a satellite is lost after a
successful 3D fix (min four satellites available), the altitude is kept constant at the last known value.
This is called a 2D fix.
u-blox receivers do not calculate any navigation solution with less than three satellites.
3.1.10.3 Navigation output filters
The result of a navigation solution is initially classified by the fix type (as detailed in the fixType
field of UBX-NAV-PVT message). This distinguishes between failures to obtain a fix at all ("No Fix")
and cases where a fix has been achieved, which are further subdivided into specific types of fixes
(e.g. 2D, 3D, dead reckoning).
Where a fix has been achieved, a check is made to determine whether the fix should be classified as
valid or not. A fix is only valid if it passes the navigation output filters as defined in CFG-NAVSPG-
OUTFIL. In particular, both PDOP and accuracy values must be below the respective limits.
UBX-20039643 - R06
3 Receiver functionality Page 19 of 119
C1-Public