4
02
Fractions from recurring decimals
Recurring decimals may be converted to fraction by proceeding in the following way:
= 0.111111111111 = 0.01010101010
= 0.001001001001001 = 0.000100010001
For example, 0.345345345…… is
0.345345345
……
=
Program
?→ A:?→ B:10^ A -1→ A:A → X:B → Y:Lbl 1:A - B → A:A ≧
B ⇒ Goto 1:A =0⇒ Goto 2:A → C:B → A:C → B:Goto 1:Lbl
2:Y ÷ B X÷B <73 STEP >
Execution Example:
Write 0.345345••• as a fraction.
A? : The number of digits in the repeated pattern (e.g. 3 in the example)
B? : The recurring sequence of digits (e.g. 345 in the example)
*This program deals only with the case in which the 1st to Ath digits immediately following
the decimal point are repeated.
i.e. 0.033333...= 1/30 and 0.166666...= 1/6 cannot be converted.
1
9
---
……
1
99
------
……
1
999
---------
……
1
9999
------------
……
345
999
---------
115
333
---------
=
ON
MODE MODE MODE
1
PRGM
MODE
1
COMP
1
P1
Prog
1
S A
D R
P1
P2 P3 P4
G
3
EXE
S A
D R
P1
P2 P3 P4
G
3 4 5
EXE
Disp
S A
D R
P1
P2 P3 P4
G
EXE
S A
D R
P1
P2 P3 P4
G
関数電卓事例集 .book 4 ページ 2002年9月2日 月曜日 午後6時51分