EasyManua.ls Logo

Agilent Technologies E8257D User Manual

Agilent Technologies E8257D
366 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #267 background imageLoading...
Page #267 background image
Agilent N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 257
Creating and Downloading Waveform Files
Programming Examples
end
% Save the data to a file
% Note: The waveform is saved as unsigned short integers. However,
% the acual bit pattern is that of signed short integers and
% that is how the Agilent MXG/ESG/PSG interprets them.
filename = ‘C:\Temp\PSGTestFile’;
[FID, message] = fopen(filename,’w’);% Open a file to write data
if FID == -1 error(‘Cannot Open File’); end
fwrite(FID,waveform,’unsigned short’);% write to the file
fclose(FID); % close the file
% 3.) Load the internal Arb format file *********************************
% This process is just the reverse of saving the waveform
% Read in waveform as unsigned short integers.
% Swap the bytes as necessary
% Convert to signed integers then normalize between +-1
% De-interleave the I/Q Data
% Open the file and load the internal format data
[FID, message] = fopen(filename,’r’);% Open file to read data
if FID == -1 error(‘Cannot Open File’); end
[internalWave,n] = fread(FID, ‘uint16’);% read the IQ file
fclose(FID);% close the file
internalWave = internalWave’; % Conver from column array to row array
% If on a PC swap the bytes back to Little Endian
if strcmp( computer, ‘PCWIN’ ) % Put the bytes into the correct order
internalWave= bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8));
end
% convert unsigned to signed representation
internalWave = double(internalWave);
tmp = (internalWave > 32767.0) * 65536;
iqWave = (internalWave - tmp) ./ 32767; % and normalize the data
% De-Interleave the IQ data
IwaveIn = iqWave(1:2:n);
QwaveIn = iqWave(2:2:n);

Table of Contents

Other manuals for Agilent Technologies E8257D

Questions and Answers:

Agilent Technologies E8257D Specifications

General IconGeneral
BrandAgilent Technologies
ModelE8257D
CategoryInverter
LanguageEnglish

Summary

Getting Started with Remote Operation

Interfaces

Details various interface types (GPIB, LAN, RS-232, USB) for instrument communication.

IO Libraries and Programming Languages

Covers IO libraries and common programming languages for instrument control.

Using IO Interfaces

Using GPIB

Details GPIB interface for instrument connection and control, including setup and verification.

Using LAN

Explains LAN interface protocols (VXI-11, Sockets, Telnet, FTP) for remote instrument programming.

Programming Examples

Using the Programming Interface Examples

Introduces programming examples for remote control using various interfaces and languages.

GPIB Programming Interface Examples

Provides examples for GPIB programming and instrument control, including interface checks and queries.

LAN Programming Interface Examples

Covers LAN programming examples using VXI-11 and Sockets LAN protocols for instrument control.

Programming the Status Register System

Overview

Provides an overview of the status register system for monitoring signal generator conditions and errors.

Status Register Bit Values

Explains how each bit in a register is represented and how to enable/query bits using SCPI commands.

Accessing Status Register Information

Details methods for monitoring conditions, including polling and service request interrupts.

Status Byte Group

Describes the Status Byte Group, including the Status Byte Register and Service Request Enable Register.

Creating and Downloading Waveform Files

Creating and Downloading User-Data Files

Related product manuals