SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R26 System description
Page 33 of 217
1.5.2 RTC supply input/output (V_BCKP)
The V_BCKP pin of SARA-G3 and SARA-U2 series modules connects the supply for the Real Time Clock (RTC)
and Power-On internal logic. This supply domain is internally generated by a linear LDO regulator integrated in
the Power Management Unit, as described in Figure 18. The output of this linear regulator is always enabled
when the main voltage supply provided to the module through the VCC pins is within the valid operating range,
with the module switched off or switched on.
Baseband
Processor
51
VCC
52
VCC
53
VCC
2
V_BCKP
Linear
LDO
RTC
Power
Management
SARA-G340 / SARA-G350
SARA-U2 series
32 kHz
Baseband
Processor
51
VCC
52
VCC
53
VCC
2
V_BCKP
Linear
LDO
RTC
Power
Management
SARA-G300 / SARA-G310
32 kHz
31
EXT32K
Figure 18: RTC supply input/output (V_BCKP) and 32 kHz RTC timing reference clock simplified block diagram
The RTC provides the module time reference (date and time) that is used to set the wake-up interval during the
idle mode periods between network paging, and is able to make available the programmable alarm functions.
The RTC functions are available also in power-down mode when the V_BCKP voltage is within its valid range
(specified in the “Input characteristics of Supply/Power pins” table in the SARA-G3 series Data Sheet [1] and
SARA-U2 series Data Sheet [2]) and, for SARA-G300 / SARA-G310 modules only, when their EXT32K input pin is
fed by an external 32.768 kHz signal with proper characteristics (specified in the “EXT32K pin characteristics”
table in the SARA-G3 series Data Sheet [1]). See the u-blox AT Commands Manual [3] for more details.
The RTC can be supplied from an external back-up battery through the V_BCKP, when the main voltage supply
is not provided to the module through VCC. This lets the time reference (date and time) run until the V_BCKP
voltage is within its valid range, even when the main supply is not provided to the module.
The RTC oscillator does not necessarily stop operation (i.e. the RTC counting does not necessarily stop) when
V_BCKP voltage value drops below the specified operating range minimum limit (1.00 V): the RTC value read
after a system restart could be not reliable, as explained in Table 7.
RTC oscillator does not stop operation
RTC value read after a restart of the system is reliable
V_BCKP within operating range
RTC oscillator does not necessarily stop operation
RTC value read after a restart of the system is not reliable
V_BCKP below operating range
RTC oscillator stops operation
RTC value read after a restart of the system is reliable
V_BCKP below operating range
Table 7: RTC value reliability as function of V_BCKP voltage value
Consider that the module cannot switch on if a valid voltage is not present on VCC even when the RTC is
supplied through V_BCKP (meaning that VCC is mandatory to switch on the module).