Wiring Main Circuit Terminals
2-15
îš‹ Wiring the Main Circuits
This section describes wiring connections for the main circuit inputs and outputs.
Wiring Main Circuit Inputs
Observe the following precautions for wiring the main circuit power supply inputs.
Installing a Molded-case Circuit Breaker
Always connect the power input terminals (R, S, and T) and power supply via a molded-case circuit breaker
(MCCB) suitable for the Inverter.
• Choose an MCCB with a capacity of 1.5 to 2 times the Inverter's rated current.
• For the MCCB's time characteristics, be sure to consider the Inverter's overload protection (one minute at
150% of the rated output current).
• If the same MCCB is to be used for more than one Inverter, or other devices, set up a sequence so that the
power supply will be turned OFF by a fault output, as shown in Fig 2.6.
Fig 2.6 MCCB Installation
Installing a Ground Fault Interrupter
Inverter outputs use high-speed switching, so high-frequency leakage current is generated. Therefore, at the
Inverter primary side, use a ground fault interrupter to detect only the leakage current in the frequency range
that is hazardous to humans and exclude high-frequency leakage current.
• For the special-purpose ground fault interrupter for Inverters, choose a ground fault interrupter with a sen-
sitivity amperage of at least 30 mA per Inverter.
• When using a general ground fault interrupter, choose a ground fault interrupter with a sensitivity amper-
age of 200 mA or more per Inverter and with an operating time of 0.1 s or more.
* For 400 V Class Inverters, connect a 400/200 V transformer.
20P4 to 2030: 3-phase,
200 to 240 VAC, 50/60 Hz
2037 to 2110: 3-phase,
200 to 230 VAC, 50/60 Hz
40P4 to 4300: 3-phase,
380 to 460 VAC, 50/60 Hz
Power
supply
Inverter
Fault output
(NC)