Full Command and Function Reference 3-223
/ (Divide)
Type: Function
Description: Divide Analytic Function: Returns the quotient of the arguments: the first argument is divided by
the second argument.
A real number a divided by a complex number (x, y) returns:
a
x
2
y
2
+
----------------
ay
x
2
y
2
+
----------------
,
⎝⎠
⎛
A complex number (x, y) divided by a real number a returns the complex number (x/a, y/a).
A complex number (x
1
, y
1
) divided by another complex number (x
2
, y
2
) returns this complex
quotient:
x
1
x
2
y
1
y
2
+
x
2
2
y
2
2
+
----------------------------
y
1
x
2
x
1
y
2
–
x
2
2
y
2
2
+
---------------------------
,
⎝⎠
⎜⎟
An array B divided by a matrix A solves the system of equations AX=B for X; that is, X = A
–1
B.
This operation uses 15-digit internal precision, providing a more precise result than the
calculation INV(A)*B. The matrix must be square, and must have the same number of columns
as the array has rows (or elements, if the array is a vector).
A binary integer divided by a real or binary number returns a binary integer that is the integral
part of the quotient. (The real number is converted to a binary integer before the division.) A
divisor of zero returns # 0.
When dividing two unit objects, the scalar parts and the unit parts are divided separately.
Access:
/
Flags: Numerical Results (-3)
Input/Output:
Level 2/Argument 1 Level 1/Argument 2 Level 1/Item 1
z
1
z
2
→
z
1
/ z
2
[ array ] [[ matrix ]]
→
[[ matrix
–1
×array ]]
z 'symb'
→
'z /symb'
'symb' z
→
'symb /z'
'symb
1
' 'symb
2
'
→
'symb
1
/ symb
2
'
#n
1
n
2
→
#n
3
n
1
#n
2
→
#n
3
#n
1
#n
2
→
#n
3
x_unit
1
y_unit
2
→
(x
/ y)_unit
1
/unit
2
x y_unit
→
(x
/ y)_1/unit
x_unit y
→
(x
/ y)_unit
'symb' x_unit
→
'symb / x_unit'
x_unit 'symb'
→
'x_unit / symb'
See also: +, –, *, =
= (Equal)
Type: Function