876  Appendix A: Functions and Instructions 
simult(
coeffMatrix
, 
constMatrix
[, 
tol
])  ⇒
⇒⇒
⇒ 
matrix
 
Solves multiple systems of linear equations, 
where each system has the same equation 
coefficients but different constants. 
Each column in 
constMatrix
 must contain the 
constants for a system of equations. Each column 
in the resulting matrix contains the solution for 
the corresponding system. 
Solve:    x + 2y = 1
    x + 2y = 2 
  3x + 4y = ë 1
  3x + 4y = ë 3 
simult([1,2;3,4],[1,2;ë 1,ë 3]) 
¸ 
  
 
  [
ë 3  ë 7
2   9/2
] 
For the first system, x=ë 3 and y=2. For the second 
system, x=ë 7 and y=9/2. 
 
sin()  W key 
sin(
expression1
)  ⇒
⇒⇒
⇒ 
expression
 
sin(
list1
)  ⇒
⇒⇒
⇒ 
list
 
sin(
expression1
) returns the sine of the argument 
as an expression. 
sin(
list1
) returns a list of the sines of all elements 
in 
list1
. 
Note: The argument is interpreted as a degree, 
gradian or radian angle, according to the current 
angle mode. You can use ó ,
G
 or ô  to override 
the angle mode setting temporarily. 
In Degree angle mode: 
sin((p/4)ô ) ¸ 
‡2
2
 
sin(45)
 ¸ 
‡2
2
 
sin({0,60,90})
 ¸  {0  
‡3
2
  1} 
In Gradian angle mode: 
sin(50) ¸ 
‡2
2
 
In Radian angle mode: 
sin(p/4) ¸ 
‡2
2
 
sin(45
¡) ¸ 
‡2
2
 
sin(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
 
Returns the matrix sine of 
squareMatrix1
. This is 
not
 the same as calculating the sine of each 
element. For information about the calculation 
method, refer to 
cos(). 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode: 
sin([1,5,3;4,2,1;6,ë 2,1]) ¸ 
 
.942…   ë.045…  ë.031… 
ë.045…  .949…   ë.020…
ë.048…  ë.005…  .961…
 
 
sinê ()  2 Q key 
sinê (
expression1
)  ⇒
⇒⇒
⇒ 
expression
 
sinê (
list1
)  ⇒
⇒⇒
⇒ 
list
 
sinê (
expression1
) returns the angle whose sine is 
expression1
 as an expression. 
sinê (
list1
) returns a list of the inverse sines of 
each element of 
list1
. 
Note: The result is returned as a degree, gradian 
or radian angle, according to the current angle 
mode setting. 
In Degree angle mode: 
sinê (1) ¸ 90 
In Gradian angle mode: 
sinê (1) ¸ 100 
In Radian angle mode: 
sinê ({0,.2,.5}) ¸ 
  {0  .201...  .523...}