886 Appendix A: Functions and Instructions
tan() Y key
tan(
expression1
) ⇒
⇒⇒
⇒
expression
tan(
list1
) ⇒
⇒⇒
⇒
list
tan(
expression1
) returns the tangent of the
argument as an expression.
tan(
list1
) returns a list of the tangents of all
elements in
list1
.
Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current
angle mode. You can use ó ,
G
orô to override
the angle mode setting temporarily.
In Degree angle mode:
tan((p/4)ô ) ¸ 1
tan(45)
¸ 1
tan({0,60,90})
¸
{0
‡3 undef}
In Gradian angle mode:
tan((p/4)ô ) ¸
π
π
)
4
(tan•200
tan(50)
¸ 1
tan({0,50,100})
¸
{0 1 undef}
In Radian angle mode:
tan(p/4) ¸ 1
tan(45
¡) ¸ 1
tan({
p,p/3,-p,p/4}) ¸
{0 ‡3 0 1}
tan(
squareMatrix1
) ⇒
⇒⇒
⇒
squareMatrix
Returns the matrix tangent of
squareMatrix1
. This
is
not
the same as calculating the tangent of each
element. For information about the calculation
method, refer to
cos().
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
tan([1,5,3;4,2,1;6,ë 2,1]) ¸
ë 28.291… 26.088… 11.114…
12.117…
ë 7.835… ë 5.481…
36.818…
ë 32.806… ë 10.459…
tanê () 2 S key
tanê (
expression1
) ⇒
⇒⇒
⇒
expression
tanê (
list1
) ⇒
⇒⇒
⇒
list
tanê (
expression1
) returns the angle whose
tangent is
expression1
as an expression.
tanê (
list1
) returns a list of the inverse tangents
of each element of
list1
.
Note: The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
tanê (1) ¸ 45
In Gradian angle mode:
tanê (1) ¸ 50
In Radian angle mode:
tan
ê ({0,.2,.5}) ¸
{0 .197
... .463...}
tanê(
squareMatrix1
) ⇒
⇒⇒
⇒
squareMatrix
Returns the matrix inverse tangent of
squareMatrix1
. This is
not
the same as calculating
the inverse tangent of each element. For
information about the calculation method, refer
to
cos().
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
tanê([1,5,3;4,2,1;6,ë 2,1]) ¸
ë.083… 1.266… .622…
.748… .630…
ë.070…
1.686…
ë 1.182… .455…